

A gravitationally lensed Lyman Alpha Nebula along with a hint of ionizing LyC emission

Sam Kim (Center of Astro-engineering, PUC, la silla MPG2.2m SA) Nicolas Laporte, Franz Bauer (PUC), Leopoldo Infante (PUC)

External collaboration: J. Richard, R. Pello, S. Cantalupo. D. Bina.

An real example of candidate of lyman alpha continuum source and lyman alpha emission

- Star-forming galaxies as leading candidate sources dominating cosmic reionization.
- The search for analogs at moderate redshift showing Lyman continuum (LyC) leakage is currently an active line of research.
- Because of the intergalactic medium (IGM) opacity, direct observation of ionizing radiation during reionization is very much difficult. $\rightarrow z < 4$ source could be better sample.
- Z~ 3 LyC source could be better candidate than local LyC galaxy because of red UV slope in local star forming galaxy (dust ..etc...)
- LyC usually comes with Lya

Lyman Alpha RT in opaque medium

Dijkstra 2014

Lyman alpha –Continuum connection

The presence of low NHI (neutral hydrogen column density) `holes' limits how much Ly α has to diffuse prior to escape: Ly α spectral lines of LyC emitting objects are narrower in frequency direction.

Ion2 (GOODS-South): the only LyC source spectroscopically confirmed (Vanzella + 2016, de Barros + 2016)

F336W pix 0.03"	F435W pix 0.03"	F606W pix 0.03"
λ < 890Å	Vanzella + 2016	B
Lyman Continuum	Vanzella + 20	€ 0.6″

MACS0416 MUSE field

-11 hours exposure (58 exposures in total)
-FWHM ~ 0.8"
-F_{lim}~ 10⁻¹⁹ erg s⁻¹ cm⁻² arcsec ⁻²
-ZAP/MPDAF/muselet & CubEx package
-Hundred of confirmed emission sources
- Source characterization by Kim, Bauer (in prep)

Lensed LyA detection

Redshift estimation with UV multiple emission lines (z=3.2174)

with CAT v.3 (lenstool) Physical scale was derived !! With this conversion.

Starforming rate for Luminosity Calculation

	Mass	SFR (M/yr)	AGE (Gyr)	Metal	$\mathbf{Z}_{\mathbf{phot}}$
1	$3.63 \mathrm{x} 10^{7}$	0.37	$245 \mathrm{~Myr}$	0.17	3.353
2	3.46x10 ⁷	0.47	180 Myr	0.15	3.168
3	$5.01 \mathrm{x} 10^{7}$	0.36	$340 \mathrm{Myr}$	0.18	3.211

Escape fraction close unity

- Standard relation between Luminosity and SFR
- Dijkstra & Jeeson, Daniel 2013
- L = 1e42 erg/s * SFR : that on average
- f_esc~10% at z~3

MUSE 0416 LAB1 ~1 why?

2D spectrum of outflow increase signature \rightarrow simple shell model break down

Steidel+ 2010, Dalla Vecchia+ 2012

- Momentum driven outflow
- Feedback by pressure force

Lyman alpha –Continuum connection

The presence of low NHI (neutral hydrogen column density) `holes' limits how much Lya has to diffuse prior to escape: Lya spectral lines of LyC emitting objects are narrower in frequency direction.

Faint Ionizing Continuum Signal?

HFF+CLASH F814W + F390W F390W

Strong ionizing flux detected in K-band excess (H beta).

Conclusion

- We used VLT/MUSE, to find redshifts of z = 3.217 faint and extended Lya source which is gravitatially lensed
- Considering magnification factor ~ 9 (CATS V3.0 model) We are resolving extended Lya nebular - LyC candidate into details.
- Conventional expanding shell model for Lya profile is not consistend with MUSE 2D spectra.
- Lyman continuum leakage could be associated with morphological complexity and extended Lya.